Artificial Intelligence CE-417, Group 1 Computer Eng. Department Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from 15-780 course at CMU.

Continuous Optimization

Example: Weber Point

- Given a collection of cities (assume on 2D plane) how can we find the location that minimizes the sum of distances to all cities?
 - Denote the locations of the cities as $\ y^{(1)},\ldots,y^{(m)}$

• Write as the optimization problem:

$$\underset{x}{\text{minimize}} \sum_{i=1}^{m} \lVert x - y^{(m)} \rVert_2$$

Example: Image deblurring and denoising

(a) Original image. (b) Blurry, noisy image. (c) Restored image. Figure from (O'Connor and Vandenberghe, 2014)

• Given corrupted image $Y \in \mathbb{R}^{m imes n}$, reconstruct the image by solving the optimization:

$$\underset{X}{\text{minimize }} \sum_{i,j} \left| Y_{ij} - (K * X)_{ij} \right| + \lambda \sum_{i,j} \left((X_{ij} - X_{i,j+1})^2 + (X_{i+1,j} - X_{ij})^2 \right)^{\frac{1}{2}}$$

where K * denotes convolution with a blurring filter

Example: robot trajectory planning

- Many robotic planning tasks are more complex than shortest path, e.g. have robot dynamics, require "smooth" controls
 - Common to formulate planning problem as an optimization task
 - Robot state x_t and inputs u_t:

$$\begin{array}{ll} \underset{x_{1:T}, u_{1:T-1}}{\text{minimize}} & \sum_{i=1}^{T} \|u_t\|_2^2 \\ \text{subject to} & x_{t+1} = f_{\text{dynamics}}(x_t, u_t) \\ & x_t \in \text{FreeSpace}, \forall t \\ & x_1 = x_{\text{init}}, \; x_T = x_{\text{goal}} \end{array}$$

Example: Machine Learning

 As we will see in much more detail shortly, virtually all (supervised) machine learning algorithms boil down to solving an optimization problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{m} \ell(h_{\theta}(x^{(i)}), y^{(i)})$$

where

•
$$\displaystyle rac{x^{(i)} \in \mathcal{X}}{y^{(i)} \in \mathcal{Y}}$$
 are inputs

- ℓ is a loss function
- $h_{ heta}$ is a hypothesis function parameterized by heta

The benefit of optimization

- One of the key benefits of looking at problems in Al as optimization problems: we separate out the *definition* of the problem from the *method* for solving it.
- For many classes of problems, there are off-the-shelf solvers that will let you solve even large, complex problems, once you have put them in the right form.

Classes of optimization problems

- Many different names for types of optimization problems: linear programming, quadratic programming, nonlinear programming, semidefinite programming, integer programming, geometric programming, mixed linear binary integer programming (the list goes on and on, can all get a bit confusing)
- We're instead going to focus on two dimensions: convex vs. nonconvex and constrained vs. unconstrained

Constrained vs. unconstrained

- In unconstrained optimization, every point $x \in \mathbb{R}^n$ is feasible, so singular focus is on minimizing f(x)
- In contrast, for constrained optimization, it may be difficult to even find a point $x \in C$

9

• Often leads to kind of different methods for optimization

How hard is real-valued optimization?

- How long does it take to find an ε-optimal minimizer of a real-valued function?
 General function: impossible!
 - We need to make some assumptions about the function:
 - Assume f is Lipschitz-continuous: (can not change too quickly)

$$|f(x)-f(y)|\leq L||x-y||.$$

How hard is real-valued optimization? (cont.)

- After t iterations, the error of any algorithm is $\Omega\left(\frac{1}{t^{1/n}}\right)$.
 - Any grid-search is nearly optimal
- Optimization is hard, but assumptions make a big difference.
 - we went from impossible to very slow

Convex function

Nonconvex function

12

- Originally, researchers distinguished between linear (easy) and nonlinear (hard) problems
- But in 80s and 90s, it became clear that this wasn't the right distinction, key difference is between convex and nonconvex problems
- Convex problem:

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$$

where f is a convex function and \mathcal{C} is a convex set

2nd derivative being positive iff convexity (one dimensional)

if part

From convexity, $f(ta + (1 - t)b) \leq tf(a) + (1 - t)f(b)$.

Let t = 1/2, a = x - h, and b = x + h.

Then

$$f(x) \leq \frac{1}{2}f(x-h) + \frac{1}{2}f(x+h)$$
$$\implies f(x+h) - 2f(x) + f(x-h) \geq 0$$

Only if part

Proof: We use the Taylor series expansion of the function around x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x^*)}{2}(x - x_0)^2, \qquad (2.73)$$

where x^* lies between x_0 and x. By hypothesis, $f''(x^*) \ge 0$, and thus the last term is nonnegative for all x.

We let $x_0 = \lambda x_1 + (1 - \lambda)x_2$ and take $x = x_1$, to obtain

$$f(x_1) \ge f(x_0) + f'(x_0)((1-\lambda)(x_1-x_2)).$$
(2.74)

Similarly, taking $x = x_2$, we obtain

$$f(x_2) \ge f(x_0) + f'(x_0)(\lambda(x_2 - x_1)).$$
(2.75)

15

Multiplying (2.74) by λ and (2.75) by $1 - \lambda$ and adding, we obtain (2.72). The proof for strict convexity proceeds along the same lines.

Hessian being positive semi-definite iff convexity (multi-Hessian being positive semi-definite iff convexity (multif(x+t) dimensional) f(x+t) = f(x+t)Function f(.) is convex iff its one-dimensional projection along <u>any</u> direction d, g(t) = f(.+td) is convex.

- Note that the 2nd derivative of g is d^T H_f d, where H_f is the hessian of the function f.
- $d^{T} H_{f} d$ being non-negative for any d means H_{f} being positive semi-definite.

Examples of convex functions $= a^2 e \neq p (a \neq)$ Exponential: $f(x) = \exp(ax), a \in \mathbb{R}$ Negative logarithm: $f(x) = -\log x$, with domain x > 0Squared Euclidean norm: $f(x) = ||x||_2^2 \equiv x^T x \equiv \sum_{i=1}^n x_i^2$ Euclidean norm: $f(x) = ||x||_2$ || $dx + (1-d)||_{z} \leq ||dx||_{z}$ Non-negative weighted sum of convex functions $f(x) = \sum_{i=1}^{n} w_i f_i(x) \,, \qquad w_i \geq 0, f_i \text{ convex}$ 17

onver Convex Optimization cramin-t(2) Convex Set • The key aspect of convex optimization problems that make them tractable is that all local optima are global optima. x6(• **Definition:** a point x is globally optimal if x is feasible and there is no feasible y such that f(y) < f(x)* EC • **Definition:** a point x is locally optimal if x is feasible and there is some R > 0such that for all feasible y with $\|x-y\|_2 \leq R, \, f(x) \leq f(y)$ • Theorem: For a convex optimization problem all locally optimal points are globally optimal. Relaxation

Proof of global optimality

2'Ax+

20

• **Proof:** Given a locally optimal x (with optimality radius R), and suppose there exists some feasible y such that f(y) < f(x)

Now consider the point $z = \theta x + (1 - \theta)y, \qquad \theta = 1 - \frac{R}{2\|x - y\|_2}$

1) Since $x, y \in \mathcal{C}$ (feasible set), we also have $z \in \mathcal{C}$ (by convexity of \mathcal{C}) 2) Furthermore, since f is convex: $f(z) = f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) < f(x) \text{ and } \|x - z\|_2 = \|x - (1 - \frac{R}{2\|x - y\|_2})x + \frac{R}{2\|x - y\|_2}y\|_2 = \left\|\frac{R(x - y)}{2\|x - y\|_2}\right\|_2 = \frac{R}{2}$

Thus, z is feasible, within radius R of x, and has lower objective value, a contradiction of supposed local optimality of x

The gradient

• A key concept in solving optimization problems is the notation of the gradient of a function (multi-variate analogue of derivative)

21

• For $f : \mathbb{R}^n \to \mathbb{R}$, gradient is defined as vector of partial derivatives

• Points in "steepest direction" of increase in function f.

Gradient descent

• Gradient motivates a simple algorithm for minimizing f(x): take small steps in the direction of the negative gradient

Algorithm: Gradient Descent Given: Function f, initial point x_0 , step size $\alpha > 0$ Initialize: $x \leftarrow x$

22

 $\begin{array}{l} x \leftarrow x_0 \\ \text{Repeat until convergence:} \\ x \leftarrow x \ - \alpha \nabla_x f(x) \end{array}$

• "Convergence" can be defined in a number of ways

Gradient descent works

• **Theorem:** For differentiable f and small enough α , at any point x that is not a (local) minimum

$$f \big(x - \alpha \nabla_x f(x) \big) < f(x)$$

i.e., gradient descent algorithm will decrease the objective

- Proof: Any differentiable function f can be written in terms of its Taylor expansion: $f(x+v) = f(x) + \nabla_x f(x)^T v + O(\|v\|_2^2)$

Gradient descent works (cont.)

 ${\ensuremath{\bullet}}$ Choosing $v=-\alpha \nabla_x f(x)$, we have

$$\begin{split} f \big(x - \alpha \nabla_x f(x) \big) &= f(x) - \alpha \nabla_x f(x)^T \nabla_x f(x) + O(\|\alpha \nabla_x f(x)\|_2^2) \\ &\leq f(x) - \alpha \|\nabla_x f(x)\|_2^2 + C \|\alpha \nabla_x f(x)\|_2^2 \\ &= f(x) - (\alpha - \alpha^2 C) \|\nabla_x f(x)\|_2^2 \\ &< f(x) \quad (\text{for } \alpha < 1/C \text{ and } \|\nabla_x f(x)\|_2^2 > 0) \end{split}$$

- (Watch out: a bit of subtlety of this line, only holds for small $lpha
 abla_x f(x)$)
- We are guaranteed to have $\| \nabla_x f(x) \|_2^2 \! > \! 0 \,$ except at optima
- Works for both convex and non-convex functions, but with convex functions guaranteed to find global optimum

Gradient descent in practice

• Choice of α matters a lot in practice:

$$\underset{x}{\text{minimize}} \ 2x_1^2 + x_2^2 + x_1x_2 - 6x_1 - 5x_2$$

