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Continuous Optimization
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Example: Weber Point

~

_ * Given a collection of cities (assume on 2D plane) how can we find the location

that minimizes the sum of distances to all cities? -
* Denote the locations of the cities as Y <1), ey y<m> o o~ adit
* Write as the optimization problem: ‘
™m Phiptia
minimize ) |jz — 3™,
xXr
1=1
et u N’
Ny
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Example: Image deblurring and denoising

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure from (O’Connor and Vandenberghe, 2014)

* Given corrupted image Y € [R"*", reconstruct the image by solving the

optimization:

mlmmlze Z| — (K * X) Z]’ +)\Z( X — X ,g+1> + (Xz'+1,j _Xij)Q)%

1,7

* where K * denotes convolution with a blurring filter )
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\/ ~ Example: robot trajectory planning

—

~/* Many robotic planning tasks are more complex than shortest path, e.g. have

robot dynamics, require “smooth” controls
* Common to formulate planning problem as an optimization task

* Robot state x, and inputs u;:

T

minimize Y [u, 3
o Er b B Ao

SU-b.jeCt to L1 = fdynamics (xta ut>
x, € FreeSpace, Vt
T1 = Tinit, Tp=

init?

goal Figure from (Schulman et al., 2014)
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Example: Machine Learning

* As we will see in much more detail shortly, virtually all (supervised) machine

learning algorithms boil down to solving an optimization problem

o (4)) ,,(%)
mmlemlze;ah@(ﬂ? ), y)

where
. (0 € X are inputs
. y<2) - y are outputs
e /¢ is a loss function

e hisa hypothesis function parameterized by
0



The benefit of optimization

* One of the key benefits of looking at problems in Al as optimization problems:

we separate out the definition of the problem from the method for solving it.

* For many classes of problems, there are off-the-shelf solvers that will let you

solve even large, complex problems, once you have put them in the right form.
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Classes of optimization problems

~ * Many different names for types of optimization problems: linear
programming, quadratic programming, nonlinear programming, semidefinite
programming, infeger programming, geometric programming, mixed linear

binary integer programming (the list goes on and on, can all get a bit

confusing)

* We're instead going to focus on two dimensions: convex vs. nonconvex and

constrained vs. unconstrained

Constrained A----------------------------------g.

Unconstrained

Convex Nonconvex



Constrained vs. unconstrained

A A C

X pe & *
1 % 1 T

> >
49 X2

minimize f(x)
o

minimize f(x)
T subject to z € €

* In unconstrained optimization, every point X € R" is feasible, so singular focus is
on minimizing f(x)
* In contrast, for constrained optimization, it may be difficult to even find a point

x EC

* Often leads to kind of different methods for optimization

N~ (U e\
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How hard is real-valued optimization?
- P

~—

* How long does it take to find an g€-optimal minimizer of a real-valued

function? :
min f(x).
General function: impossiblel XER”

* We need to make some assumptions about the function:

* Assume f is Lipschitz-continuous: (can not change too quickly)

f(x) = f(y)| < Lllx =yl
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- How hard is real-valued optimization? (cont.)

1
* After t iterations, the error of any algorithm is () (m)

* Any grid-search is nearly optimal

* Optimization is hard, but assumptions make a big difference.

* we went from impossible to very slow

N’
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Convex vs. nonconvex optimization
4_7/{@4 FegI T 15 Cover

/
fi(x) fo(x)

Convex function Nonconvex function
* Originally, researchers distinguished between linear (easy) and nonlinear

(hard) problems

* But in 80s and 90s, it became clear that this wasn’t the right distinction, key

difference is between convex and nonconvex problems

* Convex problem:
minimize f(x)
xXr
subject to x € €

where f is a convex function and C is a convex set ./
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\—/ & Co Convex sets Not Comnvex

VA?C(B- / N’
e’ /’\’LZG\O Q "/
A(ol o T oor + (-1 L)

= o Convex set Nonconvex set ""'!' . I
* Aset Cis convex if, forany x, yECand 0 <60 <1

cOx+(1—-0)yecC o £ ¢
* Examples:
xX, , Kg 2 x= ol 4 (¢ "“)7‘11{
* All points C = R 3 /";—> —_—
* Intervals C = {x ER" | [ < x < u } (elementwise inequality) Conv e*
o -
* Linear equalities C = {x € R" | Ax = b} (for A € R™™, b € R™) Cown
* Intersection of convex sets C = i%, C; 13 e

[ —— g
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\/ Convex functions

~ A function f : R® — R is convex if, forany X, y ER"and 0 < 0 < 1
Cy,

fllx+ (1—0)y) <O0f(x)+(1—6)f(y)

S’

£ (9% +-6V)) { }

* Convex functions “curve upwards” (or at least not downwards)

g

* If f is convex then —f is concave
—

* If f is both convex and concave, it is affine, must be of form:

=1 \J

N/
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2"%derivative being positive iff convexity (one

9 dimensional)

if part
From convexity, f(ta+ (1 —t)b) < tf(a) + (1 — t) f(b).
Lett=1/2,a=x— h,and b = x + h.
Then

FO) S 5 S = W)+ 5 fx+ B
= f(x+h)-2fx)+ f(x—h)=>0

Only if part

Proof: We use the Taylor series expansion of the function around xo:

ix")

f(x) = f(xp) + f'(.\'())(.\' — Xp) + (x — .\'())2. (2.73)

where x* lies between xy and x. By hypothesis, f”(x*) = 0, and thus

the last term is nonnegative for all x.
We let xo = Ax; + (1 — A)x2 and take x = x, to obtain

f(x1) = f(xo) + f(x)((1 = A)(x) — x2)). (2.74)
Similarly, taking x = x,, we obtain
f(x2) = f(xg) + f (x0)(A(x2 — x1)). (2.75)

Multiplying (2.74) by A and (2.75) by 1 — A and adding, we obtain (2.72).
The proof for strict convexity proceeds along the same lines. ]
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_AJHessicm being positive semi-defini’re iff convexity (multi-

N’
I dlmen5|on
Vd - ‘&(‘**té) = ¢ &> HC b -
At (% \&n nA%A\ PS.D
* Function f(.) is convex iff its one-dimension al projection along any direction d,
g(t) = f(.+1d) is convex.
e ——————”®
* Note that the 2" derivative of g is d" H, d, where H; is the hessian of the
function f.
 d" H, d being non-negative for any d means H-being positive semi-definite.
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\/ o Examples of convex functions

£ < o ewplaxd Q

Exponential: f(x) = exp(ax), a € R

Negative logarithm: f(x) = —log x, with domain x > 0

Squared Euclidean norm: f(z) = |z =2'z=3"" 1
Euclidean norm: f(z) = ||z« ok 4 C=oNIM o & (J o=l ¢

Non-negative weighted sum of convex functions ¥ WU =#2% “5
m
f(x) = z;wzfz(x), w, > 0, f, convex v
1=

-~ ~“\\ ),
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\_/ Poll: convex sets and functions  *# 7/
/ —

) |

N —P R\
Which of the following functions or sets are convex? \

1. Aunion of two convex sets € = € U €,
._:—\> x, 2 ..\--
2. Theset{r € R?|x > 0,z,2, > 1}

3. Thefunction f:R? = R, f(z) =z,x,7 ]Y v,‘\
4. Thefunctionf:R* — R, f(x) = 29 + x5 + :1;1:1:2 [
B = 9 |
~ N e\ /
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Min onvex Optimization o me
2 ~> Convex Set y=n=T) e et

x€C
* The key aspect of convex optimization problems that make them ’rrcnc’rqblei's\}
that all local opti lobal optima. Conve kX
at all local optima are global optima "‘€C.

* Definition: a point x is globally optimal if x is feasible and there is no

G

feasibl h that f(y) < f(x
easible y such tha fly) < f(x) . eC

—— #

* Definition: a point x is locally optimal if x is feasible and there is some R > 0O

such that for all feq:iTole Yy with ||$ = y“;LS R, f(ZE) < f(?J)

* Theorem: For a convex optimization problem all locally optimal points are

globally op’rimql‘.-f

s~ >
. ‘ )
Covul&" e lorabron -3"\.. Z} \/
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\)A %I) Proof of global optimality * A "'\(’“

. | o N
~ Proof: Given a locally optimal x (with optimality radius R), and suppose there
_ exists some feasible y such that f(y) < f(x)

— o _tes
Now consider the point y o ¢
Z S
N (1—0), f—1—— T )
- — 2|z —yl

1) Since x,y € C (feasible set), we also have z € € (by convexity of €)

£ {-(9»)
2) Furthermore, since f is Cor\'&ex: P
ZeC ()= f0r+(1—0)) < 67() +(1~0)f(y) < f(x) anc
o=l = o — (1= oty + oty |, = s, <G ) o

Mﬁﬁ SR

Thus, z is feasible, within radius R of x, and has lower objective value, a 20 \/
contradiction of supposed local optimality of x /

N



\/ The gradient

—

—* A key concept in solving optimization problems is the notation of the gradient

of a function (multi-variate analogue of derivative)

* For f : R" — R, gradient is defined as vector of partial derivatives

i op -2
Gradient vector feld and level curves of fi,y y=x"-3x-2y
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* Points in “steepest direction” of increase in function f.
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Gradient descent

“ » Gradient motivates a simple algorithm for minimizing f(x): take small steps in

the direction of the negative gradient

~

Algorithm: Gradient Descent
Given:

Function f, initial point x, step size o > 0
Initialize:

T < I
Repeat until convergence:

r—x —aV _f(x)

* “Convergence” can be defined in a number of ways

> =/ - u



Gradient descent works

* Theorem: For differentiable f and small enough @, at any point X that is not a

S—

(local) minimum
f(z—aV,f(z)) < f(z)
i.e., gradient descent algorithm will decrease the objective
* Proof: Any differentiable function f can be written in terms of its Taylor

expansion: f(:lj’ ?}) — f(ZIZ’) fo(:v)Tv O(”””%)

A

flx +v)

(@) + Vaf (@)
>

T+ v , et
)\




~ Gradient descent works (cont.) -

o, Choosing v = —aV f( ) we have
) f(x—avmf(x)) f(x) —aV, f(@2)"'V, f(z) +O0(|aV, f(2)]3)

/-

* (Watch out: a bit of subtlety of this line, only holds for small onxf(:z:))

f(z) —a|V f(z)]3 + ClaV, f(z)|3
f(z) — (a—a?C) |V, f(2)]3
f(z) (for a« < 1/C and |V, f(x)||5 > 0)

* We are guaranteed to have vaf<x) ”g> 0 except at optima

* Works for both convex and non-convex functions, but with convex functions

guaranteed to find global optimum
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\/ Gradient descent in practice

e

S
* Choice of @ matters a lot in practice:

minimize 2x% + x5 + x,x5 — 61, — 5,

3.0 3.0 =T 3.0
2.5 2.5 \ 2.5
2.0 2.0 y 2.0
‘2 1.5 Y 1.5 i Y 1.5
1.0 1.0 - 1.0
0.5 0.5 i 0.5
0.0 L1 ] 0.0 . ; . ] 0.0 | ! ! -
0.00.51.01.52.0253.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1 x1 x1
a = 0.05 a=0.2 a = 0.42
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