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Continuous Optimization
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Example: Weber Point

• Given a collection of cities (assume on 2D plane) how can we find the location 
that minimizes the sum of distances to all cities? 

• Denote the locations of the cities as

• Write as the optimization problem:  

3



Example: Image deblurring and denoising

• Given corrupted image                     , reconstruct the image by solving the 
optimization:

• where K * denotes convolution with a blurring filter
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Example: robot trajectory planning 

• Many robotic planning tasks are more complex than shortest path, e.g. have 
robot dynamics, require “smooth” controls 

• Common to formulate planning problem as an optimization task 

• Robot state xt and inputs ut:
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Example: Machine Learning 

• As we will see in much more detail shortly, virtually all (supervised) machine 
learning algorithms boil down to solving an optimization problem 

where           

• are inputs

• are outputs

• is a loss function

• is a hypothesis function parameterized by     
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The benefit of optimization 

• One of the key benefits of looking at problems in AI as optimization problems: 
we separate out the definition of the problem from the method for solving it. 

• For many classes of problems, there are off-the-shelf solvers that will let you 
solve even large, complex problems, once you have put them in the right form.
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Classes of optimization problems 

• Many different names for types of optimization problems: linear 
programming, quadratic programming, nonlinear programming, semidefinite 
programming, integer programming, geometric programming, mixed linear 
binary integer programming (the list goes on and on, can all get a bit 
confusing) 

• We’re instead going to focus on two dimensions: convex vs. nonconvex and 
constrained vs. unconstrained 
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Constrained vs. unconstrained 

• In unconstrained optimization, every point 𝑥 ∈ Rn is feasible, so singular focus is 
on minimizing 𝑓(𝑥)

• In contrast, for constrained optimization, it may be difficult to even find a point 
𝑥 ∈ 𝒞

• Often leads to kind of different methods for optimization 9



How hard is real-valued optimization?

• How long does it take to find an ε-optimal minimizer of a real-valued 
function? 

General function: impossible!

• We need to make some assumptions about the function: 
• Assume f is Lipschitz-continuous: (can not change too quickly) 
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How hard is real-valued optimization? (cont.)

• After t iterations, the error of any algorithm is Ω !
"!/#

. 

• Any grid-search is nearly optimal 

• Optimization is hard, but assumptions make a big difference. 
• we went from impossible to very slow 
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Convex vs. nonconvex optimization 

• Originally, researchers distinguished between linear (easy) and nonlinear 
(hard) problems 

• But in 80s and 90s, it became clear that this wasn’t the right distinction, key 
difference is between convex and nonconvex problems 

• Convex problem:

where 𝑓 is a convex function and 𝒞 is a convex set
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Convex sets 

• A set 𝒞 is convex if, for any 𝑥, 𝑦 ∈ 𝒞 and 0 ≤ 𝜃 ≤ 1

• 𝜃𝑥 + (1 − 𝜃) 𝑦 ∈ 𝒞

• Examples:
• All points 𝒞 = Rn

• Intervals 𝒞 = {𝑥 ∈ Rn | 𝑙 ≤ 𝑥 ≤ 𝑢 } (elementwise inequality) 

• Linear equalities 𝒞 = {𝑥 ∈ Rn | 𝐴𝑥 = 𝑏} (for 𝐴 ∈ Rm*n, 𝑏 ∈ Rm) 

• Intersection of convex sets 𝒞 = ⋂!"#
$ 𝒞! 13



Convex functions 
• A function 𝑓 : Rn→ R is convex if, for any 𝑥, 𝑦 ∈ Rn and 0 ≤ 𝜃 ≤ 1

• Convex functions “curve upwards” (or at least not downwards) 

• If 𝑓 is convex then −𝑓 is concave 

• If 𝑓 is both convex and concave, it is affine, must be of form: 
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2nd derivative being positive iff convexity (one 
dimensional)
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Hessian being positive semi-definite iff convexity (multi-
dimensional)

• Function f(.) is convex iff its one-dimensional projection along any direction d, 
g(t) = f(.+td) is convex.

• Note that the 2nd derivative of g is dT Hf d, where Hf is the hessian of the 
function f. 

• dT Hf d being non-negative for any d means Hf being positive semi-definite. 
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Examples of convex functions 
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Poll: convex sets and functions 

Which of the following functions or sets are convex? 
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Convex Optimization

• The key aspect of convex optimization problems that make them tractable is 
that all local optima are global optima.

• Definition: a point 𝑥 is globally optimal if 𝑥 is feasible and there is no 
feasible 𝑦 such that 𝑓(𝑦) < 𝑓(𝑥) 

• Definition: a point 𝑥 is locally optimal if 𝑥 is feasible and there is some 𝑅 > 0 
such that for all feasible 𝑦 with 

• Theorem: For a convex optimization problem all locally optimal points are 
globally optimal. 
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Proof of global optimality 
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The gradient 

• A key concept in solving optimization problems is the notation of the gradient 
of a function (multi-variate analogue of derivative) 

• For 𝑓 : Rn→ R, gradient is defined as vector of partial derivatives 

• Points in “steepest direction” of increase in function 𝑓. 21



Gradient descent 

• Gradient motivates a simple algorithm for minimizing 𝑓(𝑥): take small steps in 
the direction of the negative gradient 

• “Convergence” can be defined in a number of ways 
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Gradient descent works 

• Theorem: For differentiable 𝑓 and small enough 𝛼, at any point 𝑥 that is not a 
(local) minimum 

i.e., gradient descent algorithm will decrease the objective

• Proof: Any differentiable function 𝑓 can be written in terms of its Taylor 
expansion: 
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Gradient descent works (cont.) 
• Choosing                              , we have

• (Watch out: a bit of subtlety of this line, only holds for small                  )

• We are guaranteed to have                             except at optima 

• Works for both convex and non-convex functions, but with convex functions 
guaranteed to find global optimum 
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Gradient descent in practice 

• Choice of 𝛼 matters a lot in practice: 
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